# 25ME101: Basics of Mechanical Engineering

| w. e. f. Acade | mic Year:                                                                                             | 2025-26             |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|
| Semester:      |                                                                                                       | 1/2                 |  |  |  |  |
| Category of th | e Course:                                                                                             | Engineering Science |  |  |  |  |
| Prerequisite:  | NIL                                                                                                   |                     |  |  |  |  |
| Rationale:     | Knowledge of basic principles of Mechanical Engineering is required in various fields of engineering. |                     |  |  |  |  |

#### **Course Outcomes:**

After Completion of the Course, Student will able to:

|     | Course Outcome (CO)                                                                                          | RBT Level<br>(Cognitive<br>Domain) |
|-----|--------------------------------------------------------------------------------------------------------------|------------------------------------|
| CO1 | Explain fundamental thermodynamic concepts and various energy sources along with their environmental impacts | Understand                         |
| CO2 | Apply gas laws and thermodynamic processes to evaluate the behavior of ideal gases                           | Apply                              |
| соз | Analyze properties of steam and describe the working of steam boilers and their components                   | Understand,<br>Analyze             |
| CO4 | Compare different heat engine and internal combustion engine cycles based on efficiency and operation        | Understand,<br>Analyze             |
| CO5 | Demonstrate the working principles of refrigeration systems, air conditioners, compressors, and pumps        | Understand<br>Apply                |
| CO6 | Identify and describe components of mechanical power transmission systems and their applications             | Understand<br>Apply                |

## **Teaching and Evaluation Scheme:**

| Teaching Scheme |   |   |   |          |    |                                  | Exam | ination Schei | me  |  |
|-----------------|---|---|---|----------|----|----------------------------------|------|---------------|-----|--|
| L               | Т | P | С | Hrs/Week | IE | IE Theory CIA Practical Total Ma |      |               |     |  |
| 2               | - | 2 | 3 | 6        | 40 | 60                               | 30   | 20            | 150 |  |

IE: Internal Evaluation Theory: Theory Exam (End Semester)
CIA: Continuous Internal Assessment Practical: Practical Exam (End Semester)

### **Detailed Syllabus:**

| Topic         |                                                        | Hrs. | % of      |
|---------------|--------------------------------------------------------|------|-----------|
|               |                                                        |      | Weightage |
| UNIT: 1       | Fundamentals of Thermodynamics and Energy              | 04   | 15        |
|               | Sources                                                |      |           |
| Basic Termi   | nology and Energy: Prime movers and its types, Concept |      |           |
| of Force,     | Pressure, Energy, Work, Power, System, Heat,           |      |           |
| Temperature   | e,                                                     |      |           |
| Specific heat | t capacity, Process, Cycle, Internal energy, Enthalpy, |      |           |
| Statements    | of Zeroth law and First law                            |      |           |
| Applications  | of Energy sources like Fossil fuels, Nuclear fuels,    |      |           |

| Hydrogen fuel, Hydraulic energy, Solar, Wind, and Bio-fuels,        |    |    |
|---------------------------------------------------------------------|----|----|
| Environmental issues like Global warming and Ozone.                 |    |    |
| UNIT: 2 Behavior of Gases and Thermodynamic Processes               | 05 | 17 |
| Gas Laws: Boyle's law, Charles's law, Gay-Lussac's law, Avogadro's  |    |    |
| law, Combined gas law                                               |    |    |
| Gas Properties: Gas constant, Relationship between Cp and Cv        |    |    |
| Thermodynamic Processes: Constant volume, Constant pressure,        |    |    |
| Isothermal, Adiabatic, Polytropic                                   |    |    |
| UNIT: 3 Properties of Steam and Boilers                             | 04 | 15 |
| Steam Properties: Steam formation, Types of steam (wet, dry,        |    |    |
| superheated), Steam properties ,Use of steam tables                 |    |    |
| Steam Boilers: Introduction, Classification, Cochran, Lancashire,   |    |    |
| Babcock and Wilcox boilers, Functions' of Boiler mountings and      |    |    |
| accessories                                                         |    |    |
| UNIT: 4 Heat Engines and Internal Combustion Engines                | 06 | 18 |
| Heat Engines: Components of heat engine, Classification of heat     |    |    |
| engine, Carnot, Rankine, Otto, Diesel cycles, Thermal efficiency    |    |    |
| IC Engines: Introduction, Classification, Engine components, Four-  |    |    |
| stroke and two-stroke Petrol/Diesel engines, Indicated power, Brake |    |    |
| power, Mechanical and thermal efficiencies                          |    |    |
| UNIT: 5 Refrigeration, Air Conditioning, Compressors and            | 07 | 20 |
| Pumps                                                               |    |    |
| Refrigeration Systems: Application of refrigeration, Refrigerants,  |    |    |
| Vapor compression systems, Domestic refrigerator                    |    |    |
| Air Conditioning: Principle of air continuing, Window and split air |    |    |
| conditioners                                                        |    |    |
| Air Compressors: uses of compressed air, classification, working of |    |    |
| reciprocating compressor, centrifugal compressor                    |    |    |
| Pumps: Centrifugal and reciprocating pumps, Applications            |    |    |
| UNIT: 6 Power Transmission and Mechanical Components                | 04 | 15 |
| Shafts and Axles                                                    |    |    |
| <b>Drives</b> : Belt, Chain, Gear – Arrangement and Applications    |    |    |
| Clutches: Disc, Centrifugal                                         |    |    |
| Brakes: Block, Shoe, Disc                                           |    |    |
|                                                                     | 30 |    |

## **List of Practical:**

| Торіс                                                                                              | Hrs |
|----------------------------------------------------------------------------------------------------|-----|
| To demonstrate and understand the construction and working of various types of boilers.            | 04  |
| To Demonstrate & understand the construction and working of four stroke petrol and diesel engines. | 02  |
| To Demonstrate & understand the construction and working of Two stroke petrol and diesel engines.  | 02  |
| To demonstrate and understand construction and working of reciprocating air compressor.            | 02  |

| To demonstrate and understand the vapor compression refrigeration system.         | 02 |  |  |  |
|-----------------------------------------------------------------------------------|----|--|--|--|
| To understand the construction, and working of window type AC and Split AC.       |    |  |  |  |
| To understand the construction, working and application of clutches, and brakes.  | 02 |  |  |  |
| To understand different arrangement and application of various power transmission |    |  |  |  |
| drives.                                                                           | 02 |  |  |  |
| Tutorials                                                                         | 05 |  |  |  |
| Assignment                                                                        | 05 |  |  |  |
|                                                                                   | 30 |  |  |  |

#### **Reference Books:**

- 1. Elements of Mechanical Engineering by N M Bhatt and J R Mehta, Mahajan Publishing House
- 2. Basic Mechanical Engineering by Dr. R K Shukla, Tech-Neo Publication.
- 3. Basic Mechanical Engineering by Pravin Kumar, Pearson Education
- 4. Fundamental of Mechanical Engineering by G.S. Sawhney, PHI Publication New Delhi
- 5. Elements of Mechanical Engineering by Sadhu Singh, S. Chand Publication

### **Course Outcomes Mapping:**

| CO<br>No. | Course Outcome (CO)                                                                                          | POs/<br>PSOs<br>Mapped                       | Cognitive<br>Level (RBT) | Knowledge<br>Category     | Class<br>Sessions<br>(Lecture) |
|-----------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|---------------------------|--------------------------------|
| CO1       | Explain fundamental thermodynamic concepts and various energy sources along with their environmental impacts | PO1,<br>PO2,<br>PO7,<br>PSO1                 | Understand               | Conceptual                | 4                              |
| CO2       | Apply gas laws and thermodynamic processes to evaluate the behavior of ideal gases                           | PO1,<br>PO2,<br>PO4,<br>PSO1                 | Apply                    | Conceptual                | 5                              |
| CO3       | Analyze properties of steam and describe the working of steam boilers and their components                   | PO1,<br>PO2,<br>PO4,<br>PSO1                 | Understand,<br>Analyze   | Conceptual,<br>Procedural | 4                              |
| CO4       | Compare different heat engine and internal combustion engine cycles based on efficiency and operation        | PO1,<br>PO2,<br>PO3,<br>PO4,<br>PSO1         | Understand,<br>Analyze   | Conceptual,<br>Procedural | 6                              |
| CO5       | Demonstrate the working principles of refrigeration systems, air conditioners, compressors, and pumps        | PO1,<br>PO2,<br>PO3,<br>PO5,<br>PO7,<br>PSO1 | Understand<br>Apply      | Conceptual,<br>Procedural | 7                              |

| CO6 | Identify and describe components of mechanical power transmission systems and their applications | PO1,,<br>PO2,<br>PO3,<br>PO5,<br>PSO1,<br>PSO2 | Understand<br>Apply | Conceptual,<br>Procedural | 4 |
|-----|--------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|---------------------------|---|
|-----|--------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|---------------------------|---|

# Mapping of COs with POs & PSOs:

| СО  | PO |   |   |   |   |   |   |   |   | PSO |    |    |   |   |
|-----|----|---|---|---|---|---|---|---|---|-----|----|----|---|---|
|     | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  | 11 | 12 | 1 | 2 |
| CO1 | 3  | 3 |   |   |   |   | 2 |   |   |     |    |    | 3 |   |
| CO2 | 3  | 3 |   | 3 |   |   |   |   |   |     |    |    | 3 |   |
| CO3 | 3  | 3 |   | 3 |   |   |   |   |   |     |    |    | 3 |   |
| CO4 | 3  | 3 | 3 | 3 |   |   |   |   |   |     |    |    | 3 |   |
| CO5 | 3  | 3 | 3 |   | 2 |   | 2 |   |   |     |    |    | 3 |   |
| CO6 | 3  | 3 | 3 |   | 2 |   |   |   |   |     |    |    | 3 | 2 |

3: High, 2: Medium, 1: Low